Voltage Controlled Nanoparticle Plasmon Resonance Tuning through Anodization

نویسندگان

  • Chatdanai Lumdee
  • Pieter G. Kik
چکیده

Frequency control of plasmon resonances is important for optical sensing applications such as Surface Enhanced Raman Spectroscopy. Prior studies that investigated substrate-based control of noble metal nanoparticle plasmon resonances mostly relied on metal substrates with organic or oxide spacer layers that provided a fixed resonance frequency after particle deposition. Here we present a new approach enabling continuous resonance tuning through controlled substrate anodization. Localized Surface Plasmon tuning of single gold nanoparticles on an Al film is observed in single-particle microscopy and spectroscopy experiments. Au nanoparticles (diameter 60 nm) are deposited on 100 nm thick Al films on silicon. Dark field microscopy reveals Au nanoparticles with a dipole moment perpendicular to the aluminum surface. Subsequently an Al2O3 film is formed with voltage controlled thickness through anodization of the particle coated sample. Spectroscopy on the same particles before and after various anodization steps reveal a consistent blue shift as the oxide thickness is increased. The observed trends in the scattering peak position are explained as a voltage controlled interaction between the nanoparticles and the substrate. The experimental findings are found to closely match numerical simulations. The effects of particle size variation and spacer layer dielectric functions are investigated numerically. The presented approach could provide a post-fabrication frequency tuning step in a wide range of plasmonic devices, could enable the investigation of the optical response of metal nanostructures in a precisely controlled local environment, and could form the basis of chemically stable frequency optimized sensors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Post-fabrication voltage controlled resonance tuning of nanoscale plasmonic antennas.

Voltage controlled wavelength tuning of the localized surface plasmon resonance of gold nanoparticles on an aluminum film is demonstrated in single particle microscopy and spectroscopy measurements. Anodization of the Al film after nanoparticle deposition forms an aluminum oxide spacer layer between the gold particles and the Al film, modifying the particle-substrate interaction. Darkfield micr...

متن کامل

Synthesis and growth mechanism of multilayer TiO2 nanotube arrays.

High-aspect-ratio TiO(2) nanotube arrays formed by anodic oxidation have drawn extensive attention due to their easy fabrication and various excellent optical, electrical and biomedical properties. In contrast to conventional single-layer TiO(2) nanotubes prepared via constant-voltage anodization, we synthesize multilayer TiO(2) nanotube arrays with high surface area by using alternating-voltag...

متن کامل

Plasmonic trapping and tuning of a gold nanoparticle dimer.

We demonstrate theoretically the trapping and manipulating of a gold nanoparticle dimer, using surface plasmon excited by a focused linearly-polarized laser beam on a silver film. We use both finite-difference time-domain force analysis and Maxwell stress tensor to show that the gold nanoparticle dimer can be trapped by a virtual probe pair. A formula is derived to represent the plasmonic field...

متن کامل

Cu nanoshells: effects of interband transitions on the nanoparticle plasmon resonance.

The optical properties of metals arise both from optical excitation of interband transitions and their collective electronic, or plasmon, response. Here, we examine the optical properties of Cu, whose strong interband transitions dominate its optical response in the visible region of the spectrum, in a nanoshell geometry. This nanostructure permits the geometrical tuning of the nanoparticle pla...

متن کامل

Hierarchically Organized Nanoparticle Mesostructure Arrays Formed through Hydrothermal Self-Assembly

We report a new self-assembly pathway that leads to supported and hierarchically organized gold nanoparticle mesostructure arrays on solid substrates such as glass slide, thermal oxide, photopolymer film, and mica. Using the nanoparticle micelle as a building block, hierarchical gold nanoparticle mesostructure arrays were prepared by a hydrothermal nucleation and growth process through self-ass...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012